

# Current Sensor HCM 200A-0-20-CFA-T-S



| Part number        | 20 31 020 0301                           |
|--------------------|------------------------------------------|
| Specification      | Current Sensor HCM 200A-0-20-CFA-T-<br>S |
| HARTING eCatalogue | https://b2b.harting.com/20310200301      |

Image is for illustration purposes only. Please refer to product description.

#### Identification

| Category          | Current measurement                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Series            | НСМ                                                                                                                                                                                                                                                                                                                                                                     |
| Element           | Current sensor                                                                                                                                                                                                                                                                                                                                                          |
| Sensor technology | Hall-Effekt<br>Closed loop                                                                                                                                                                                                                                                                                                                                              |
| Features          | Hall effect compensated current sensorMeasurable currents: AC, DC, pulsed, mixedHigh accuracy over the entire measuring rangeGalvanic insulation between primary and secondary currentSwitchboard mountingHousing material and potting mass have a flammability rating UL 94 V-0Applications: frequency converters, electrical drives, switched mode powersupplies, UPS |

## Version

| Termination          | 14 12 031 5001 000, har-flexicon 3.81 MTV-3 TB100 BK |
|----------------------|------------------------------------------------------|
| Field of application | Industrial version                                   |
| Pack contents        | Counter connector included                           |

#### **Technical characteristics**

| IPN Nominal primary current                                                                            | 200 A                                                 |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| I <sub>PM</sub> Primary current, measuring range                                                       | 0 ±300 A                                              |
| R <sub>M</sub> Measuring resistance<br>@ I <sub>PM max</sub> , U <sub>C max</sub> , T <sub>A max</sub> | 5 52 $\Omega$ For other primary currents see diagram. |
| I <sub>SN</sub> Nominal secondary current                                                              | 100 mA                                                |
| K <sub>N</sub> Turns ratio                                                                             | 1 : 2000                                              |

Page 1 / 4 | Creation date 2021-10-01 | Please note that the data specified here were taken as extracts from the online catalogue. Please refer to the user documentation for the complete and up-to-date information and data. Please also note that the user is responsible for validating functionality, conformity with applicable laws and directives, as well as for the electrical safety in the particular application. HARTING Electric Stiftung & Co. KG | Wilhelm-Harting-Straße 1 | 32339 Espelkamp | Germany Phone +49 5772 47-97100 | electric@HARTING.com | www.HARTING.com

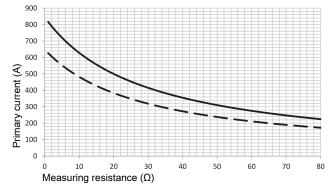


## Technical characteristics

| U <sub>C</sub> Power supply                                                     | ±12 ±15 V ±5 %                                                               |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| I <sub>C</sub> Current consumption<br>@ U <sub>C min</sub>                      | 17 mA + I <sub>S</sub>                                                       |
| X Overall accuracy<br>@ I <sub>PN</sub> , T <sub>A</sub> = 25 °C                | ±0.5 %                                                                       |
| E <sub>L</sub> Linearity                                                        | <0.1 %                                                                       |
| I <sub>O</sub> Offset current<br>@ I <sub>P</sub> = 0 A, T <sub>A</sub> = 25 °C | ±0.2 mA                                                                      |
| $I_{\mbox{OT}}$ maximum temperature drift of $I_{\mbox{O}}$                     | ±0.4 mA                                                                      |
| t <sub>r</sub> Response time<br>@ I <sub>PN</sub>                               | <1 µs                                                                        |
| di/dt with optimal coupling                                                     | >100 A/µs                                                                    |
| f Frequency                                                                     | 0 100 kHz                                                                    |
| T <sub>A</sub> Ambient temperature                                              | -40 +85 °C                                                                   |
| T <sub>S</sub> Storage temperature                                              | -45 +90 °C                                                                   |
| $R_S$ Secondary coil resistance @ $T_A_{max}$                                   | 29 Ω                                                                         |
| U <sub>D</sub> Test voltage, effective (50 Hz, 1 min)                           | 3 kV Primary - secondary                                                     |
| $U_{\mbox{St}}$ Rated impulse voltage (1,2/50 $\mbox{\mbox{$\mu$s$}}$ )         | 10 kV                                                                        |
| U <sub>B</sub> Rated voltage                                                    | 600 V                                                                        |
| Overvoltage category                                                            | III                                                                          |
| Pollution degree                                                                | 2                                                                            |
| L <sub>s</sub> Clearance distance                                               | 19.1 mm                                                                      |
| K <sub>s</sub> Creepage distance                                                | 26.5 mm                                                                      |
| Tightening torque                                                               | 3.2 Nm (2x steel screw M4 - Vertical)3.2 Nm (4x steel screw M4 - Horizontal) |

## Material properties

| Material (hood/housing)                   | Polycarbonate (PC) |
|-------------------------------------------|--------------------|
| Material flammability class acc. to UL 94 | V-0                |
| RoHS                                      | compliant          |
| ELV status                                | compliant          |
| China RoHS                                | e                  |
| REACH Annex XVII substances               | No                 |
| REACH ANNEX XIV substances                | No                 |


Page 2 / 4 | Creation date 2021-10-01 | Please note that the data specified here were taken as extracts from the online catalogue. Please refer to the user documentation for the complete and up-to-date information and data. Please also note that the user is responsible for validating functionality, conformity with applicable laws and directives, as well as for the electrical safety in the particular application. HARTING Electric Stiftung & Co. KG | Wilhelm-Harting-Straße 1 | 32339 Espelkamp | Germany Phone +49 5772 47-97100 | electric@HARTING.com | www.HARTING.com



## Material properties

| REACH SVHC substances          | No                           |
|--------------------------------|------------------------------|
| Specifications and approvals   |                              |
| Specifications                 | EN 50178<br>IEC 61373        |
| Approvals                      | DNV GL                       |
| CE                             | Yes                          |
| Commercial data                |                              |
| Packaging size                 | 1                            |
| Net weight                     | 82 g                         |
| Country of origin              | Romania                      |
| European customs tariff number | 90303370                     |
| eCl@ss                         | 27210902 Current transformer |

#### Measuring resistance



 $\begin{array}{l} ---- U_{C} = \pm 15 \ V \ -5 \ \%, \ T_{A} = 85 \ ^{\circ}\text{C} \\ --- V_{C} = \pm 12 \ V \ -5 \ \%, \ T_{A} = 85 \ ^{\circ}\text{C} \\ \\ \text{Primary currents higher than } I_{PM} \ \text{only for peak!} \end{array}$ 

#### Remark

- If  $\mathsf{I}_\mathsf{P}$  flows in the direction of the arrow  $\mathsf{I}_\mathsf{S}$  is positive.
- Over currents (»IPN) or the missing of the supply voltage can cause an additional permanent magnetic offset.
- The temperature of the primary conductor may not exceed 100 °C.

Page 3 / 4 | Creation date 2021-10-01 | Please note that the data specified here were taken as extracts from the online catalogue. Please refer to the user documentation for the complete and up-to-date information and data. Please also note that the user is responsible for validating functionality, conformity with applicable laws and directives, as well as for the electrical safety in the particular application. HARTING Electric Stiftung & Co. KG | Wilhelm-Harting-Straße 1 | 32339 Espelkamp | Germany Phone +49 5772 47-97100 | electric@HARTING.com | www.HARTING.com



Safety note



These transformers may only be used in electrical or power electronic applications which fulfill the relevant regulations (standards, EMC requirements,...).

This transformer must be used in limited-energy secondary circuits according to IEC 61010-1.

Caution, risk of electric shock



- Pay attention to protect non-insulated high-power current carrying parts against direct contact (e.g. with a protective enclosure).

- When installing this sensor please make sure that the safe separation (between primary circuit and secondary circuit) is maintained over the whole circuits and their connections.

- The sensor may only be connected to a power supply respecting the SELV/PELV protective regulations according to EN 50 178. The installation of the power supply must be short-circuit-proof.

- Disconnecting the main power must be possible.

- The current sensors support a safe separation. The creepage and clearance distances are taken as a basis for the rated voltage. They are the shortest distance between the secondary connection and the sensor's window. The actual clearance and creepage distances depend on the position of the primary conductor respectively on the actual shortest distance between the primary conductor and the secondary connection.