

SINEAX A 210 / A 220 Multifunktionales Leistungsmessgerät

63 Messgrössen 8 Energiezähler je 5 Leistungsmittelwerte P, Q, S

Verwendung

Das Leistungsmessgerät A 210/A 220 ist für den Schalttafeleinbau geeignet und misst alle wichtigen Grössen im Drehstrom- und Einphasennetz.

Es zeigt die Messgrössen durch eine kontrastreiche 14 mm hohe LED-Anzeige an. Durch die freie Programmierung der Verhältnisse für Strom- und Spannungswandler ist das Gerät zusätzlich für die Messung in Hoch- und Mittelspannungsnetzen geeignet.

Es ersetzt eine Vielzahl von Analoganzeigern und liefert die Werte mit einer hohen Genauigkeit.

Die Basisausführung ist ein Anzeiger mit 2 S0-Ausgängen, die als Impuls- oder Grenzwertausgänge programmiert werden können. Erweiterungsmodule ergänzen die Funktionalität und Flexibilität. Das Modul EMMOD 201 verfügt über eine RS232/RS485 Schnittstelle und ermöglicht einen Datenaustausch mit einem Leitsystem mittels MODBUS RTU. Datenspeicher und Digitaleingang (Hoch-/Niedertarifumschaltung) zur Überwachung bzw. Speicherung von Leistungsmittelwerten (Lastprofil) runden den Funktionsumfang ab. Die komfortable Software A200plus ermöglicht die Parametrierung und das Auslesen der Messwerte.

Das EMMOD202 hat 2 galvanisch getrenne Analogausgänge. Jede wichtige Eingangsgrösse kann dem 4 - 20 bzw. 0 - 20 mA Signal zugeordnet werden und es besteht die Möglichkeit, eine invertierende Kennlinie zu programmieren.

Das EMMOD203 erschliesst mit dem Protokoll MODBUS over TCP/IP und HTTP dem Anwender die Ethernet- und Internetwelt. Zusätzlich hat das Modul einen umfangreichen Datenspeicher, der unverlierbare Aufzeichnungen bis zu 1 Jahr ermöglicht. Eine interne, batteriegepufferte Uhr sorgt bei den Daten für den exakten Zeitstempel.

Weitere Schnittstellen-Module sind das EMMOD204 (Profibus-DP), das EMMOD205 (LON) und das EMMOD 206 (M-Bus).

Alle Module sind ohne Eingriff in das Leistungsmessgerät durch einfaches Aufstecken nachrüstbar. Es ist keine separate Hilfsenergie notwendig.

Merkmale

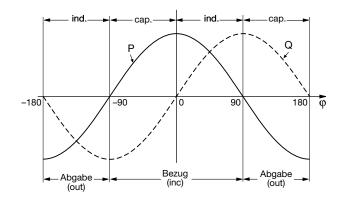
- Messung von Strom, Spannung, Wirk-, Blind- und Scheinleistung, Wirkund Blindenergie, Nullleiterstrom, Leistungsfaktor und Frequenz
- 4 Zähler für Wirkenergie: Bezug/Abgabe bei Hoch- und Niedertarif
- 4 Z\u00e4hler f\u00fcr Blindenergie: induktiv/kapazitiv bei Hoch- und Niedertarif
- Je 5 Wirk-, Blind- und Scheinleistungsmittelwerte mit programmierbarer Intervalldauer
- Zwei S0-Ausgänge für Impuls- oder Grenzwertausgänge

- Abmessungen: SINEAX A 210: 96 x 96 x 46 mm
 SINEAX A 220: 144 x 144 x 46 mm
- Wandlerverhältnisse programmierbar
- Flexible Hilfsenergieversorgung durch AC/DC Weitbereichsnetzteile
- Stromeingänge (1 A oder 5 A) galvanisch getrennt
- Nachrüstbare Erweiterungsmodule mit RS232/RS485 Interface, Lastprofilspeicher, MODBUS, Synchroneingang, Analogausgang, Ethernet, Profibus-DP oder LON
- Präzise Messwerte für U, I ≤ 0,5%, F ≤ 0,02 Hz, übrige 1%
- Min-Maxwert-Speicher
- Messung in Einphasennetzen, 3-Leiter- und 4-Leiter-Netzen im 4-Quadrantenbetrieb

Vorteile

- Hohe Funktionalität (63 Messwerte) in flacher Bauweise (Einbautiefe 46 mm)
- Dadurch geringere Kosten bei Beschaffung, Planung und Montage
- Sichere galvanische 3-Wege-Trennung zwischen allen Stromkreisen und zwischen den 3 Stromeingängen
- Grosse, von weitem ablesbare LED-Anzeige, speziell für schlecht beleuchtete Räume
- Robuste Front (IP 66) für den rauhen Industrieeinsatz
- Speicherung aller Z\u00e4hlerst\u00e4nde, der Min/Max-Werte, des Anzeigemodus und der programmierten Daten bei Hilfsenergieausfall

Multifunktionales Leistungsmessgerät


Funktion

Das Messgerät erfasst die Ströme I1, I2, I3 und die Spannungen U1, U2, U3, die Frequenz und die Phasenverschiebungen zwischen den einzelnen Strömen und Spannungen. Daraus werden alle anderen Grössen berechnet. Die Messung erfolgt intern über eingebaute Stromwandler. Somit ist ein Anschluss ohne externe Wandler zulässig.

Pro Periode wird jeder Eingangspfad 32-mal gemessen. Damit lassen sich Messgrössen bis zur 15. Oberschwingung erfassen.

Die Berechnung der Messgrössen erfolgt nach DIN 40 110 Teil 1 und Teil 2, jedoch im 4-Quadrantenbetrieb.

Die Abbildungen in diesem Datenblatt betreffen den SINEAX A 210. Anzeige und Bedienung sind jedoch beim A 220 identisch.

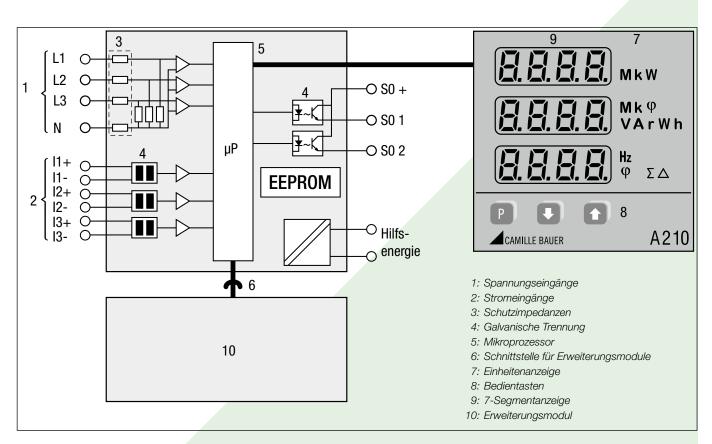


Bild 1. Blockschema

SINEAX A 210 / A 220 Multifunktionales Leistungsmessgerät

Tabelle 1: Vorzugsgeräte

Folgende Messumformer-Varianten sind als Vorzugsgeräte lieferbar. Es genügt die Angabe der Bestell-Nr.:

Beschreibung	Bestell-Nummer	Merkmalscodierung
	A 210	
500 V / 5 A, Hilfsenergie 100 bis 230 V AC/DC	149 783	210-121200
500 V / 5 A, Hilfsenergie 24 bis 60 V AC/DC	150 300	210-121100
500 V / 1 A, Hilfsenergie 100 bis 230 V AC/DC	152 447	210-111200

Varianten mit kundenspezifischen Eingangsbereichen und/oder variabler Empfindlichkeit bitte mit vollständigem Bestell-Code 210-1.... nach «Tabelle 2: Aufschlüsselung der Varianten» bestellen.

Tabelle 2: Aufschlüsselung der Varianten (siehe auch Tabelle 1: Vorzugsgeräte)

Bez	eichnung	Merkmal
SIN	EAX A210, Multifunktionales Leistungsmessgerät, Format 96 x 96 mm	210-
SIN	EAX A220, Multifunktionales Leistungsmessgerät, Format 144 x 144 mm	220-
Mer	kmale, Varianten	
1.	Nennspannung	
	500 V (Ph-Ph), 290 V (Ph-N): Übersteuerung ≤20%	1
2.	Nennstrom	
	1A	1
	5 A	2
3.	Nennfrequenz	
	50 / 60 Hz	1
4.	Hilfsenergie	
	2460 V AC/DC	1
	100230 V AC/DC	2
5.	Prüfprotokoll	
	Ohne Prüfprotokoll	0
	Prüfprotokoll in Deutsch	D
	Prüfprotokoll in Englisch	E
6.	Angebautes Erweiterungsmodul	
	Ohne	0
	EMMOD 201 Schnittstelle MODBUS/RTU, Datenlogger, Digitaleingang	1
	EMMOD 202 2 Analogausgänge	2
	EMMOD 203 Ethernet, Echtzeituhr, 2 Digitaleingänge, 2 MB Datenlogger	3
	EMMOD 204 Profibus-DP Schnittstelle	4
	EMMOD 205 Schnittstelle LON, Digitaleingang	5
	EMMOD 205 Schnittstelle LON, Digitalausgang 125 V, direkte Anbindung an Summenstation U160x von Gossen-Metrawatt möglich	6
	EMMOD 206 Schnittstelle M-Bus, Digitaleingang <230 V AC/DC	7

Multifunktionales Leistungsmessgerät

Technische Daten

Anschlussarten

Einphasig, 3-Leiter gleich bzw. ungleich belastet, 4-Leiter gleich bzw. ungleich belastet, 4-Quadrantenbetrieb

Verfügbare Messdaten

Messgrösse	Messpfad	max	min
Spannung	1-N, 2-N, 3-N	•	•
Spannung	1-2, 2-3, 3-1	•	•
Strom	1, 2, 3, N	•	
Strom I _{avg} (Bimetall-15 Min./ Schleppzeiger)	1, 2, 3	•	
Wirkleistung P	1, 2, 3, ∑	•	
Blindleistung Q	1, 2, 3, ∑	•	
Scheinleistung S	1, 2, 3, ∑	•	
cosφ (4 Quadranten-Anzeige)	1, 2, 3, ∑		
cosφ induktiv min.	1, 2, 3		•
cosφ kapazitiv min.	1, 2, 3		•
Frequenz	U, I		
P-Zähler Bezug/Abgabe (HT/NT)	Σ		
Q-Zähler ind./kap. (HT/NT)	Σ		
je 5 Wirkleistungs-Intervalle	Σ		
je 5 Blindleistungs-Intervalle	Σ		
je 5 Scheinleistungs-Intervalle	Σ		

Programmierbare Werte (Grundgerät)

Grenzwerte (Ein- und Ausschaltpunkt), Impulsrate, Wandlerverhältnis, Anschlussart, Intervalldauer für Leistungsmittelwerte.

Die Programmierung kann mit einem Jumper blockiert werden.

Die Grenzwertschwellen können trotzdem verstellt werden.

Alle Min- und Max-Werte sowie die Zählerstände können zurückgesetzt werden. Das Löschen der Zählerstände kann mit dem oben genannten Jumper ebenfalls blockiert werden.

Alle Messwerte, die gewählte Anzeige, die Zählerstände und die programmierten Daten bleiben nach einem Hilfsenergieausfall erhalten.

Werkseinstellungen

Helligkeit: (mittlerer Wert)

Grenzwert / S01: Off Grenzwert / S02: Off Wandlerverhältnis: 1:1

Jumper: Nicht in Stellung LOCK
Anschlussart: Vierleiter ungleichbelastet

Synchron-Intervall: 15 min.

Angewendete Normen und Vorschriften

IEC 1010 bzw. Sicherheitsbestimmungen für elektrische EN 61 010 Mess-, Steuer-, Regel- und Laborgeräte

EN 60 529 Schutzarten durch Gehäuse

DIN 43 864 Stromschnittstelle für Impulsübertragung

zwischen Impulsgeber und Tarifgerät (S0-

Ausgang)

DIN 40 110 Wechselstromgrössen

IEC/EN 61326-1 Elektrische Betriebsmittel für Leittechnik und

Laboreinsatz, EMV-Anforderungen, Störaus-

sendung

IEC/EN 61326/A1 Elektrische Betriebsmittel für Messtechnik, Leit-

technik und Laboreinsatz, EMV-Anforderungen,

Störfestigkeit

EN 60 688 Messumformer für die Umwandlung von

Wechselgrössen in analoge oder digitale

Signale

IEC 68-2-1/-2/-3/-6/-27

bzw.

EN 60 068-2-1/-2/-3/-6/-27

Umweltprüfungen

-1 Kälte, -2 Trockene Wärme,

-3 Feuchte Wärme, -6 Schwingungen,

-27 Schocken

Messeingänge -

Nennfrequenz: 50, 60 Hz

Eingangsnennspannung: Leiter-Leiter: 500 V

Leiter-N: 290 V

Eingangsnennstrom: 5 A oder 1 A

Kurvenform: Sinus

Eigenverbrauch: Strompfad: $\leq l^2 \cdot 0.01 \Omega$

Spannungspfad: $\leq \frac{U_{LN}^2}{300 \text{ k}\Omega}$

Zulässige dauernd überhöhte Eingangsgrössen

10 A bei 346 V im Einphasennetz 10 A bei 600 V im Drehstromnetz

Zulässige kurzzeitig überhöhte Eingangsgrössen

Überhöhte Eingangs- grösse	Anzahl der Über- höhungen	Dauer der Über- höhungen	Zeitraum zwischen 2 aufeinanderfol- genden Überhöhungen
577 V LN	10	1 s	10 s
100 A	10	1 s	100 s
100 A	5	3 s	5 min.

Messbereiche

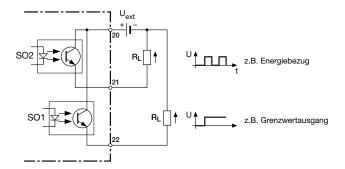
U, I, S: \leq 120% vom Nennwert P, Q: \leq ± 120% vom Nennwert

F: 45 bis 65 Hz

 $cos \phi$: ± 1 Überlastanzeige: oL

Die Frequenz wird via Strom- oder Spannungspfad gemessen,

wobei der Spannungspfad priorisiert wird.


Multifunktionales Leistungsmessgerät

Impuls-/Grenzwertausgänge →

Die beiden digitalen Ausgänge arbeiten je nach eingestellter Funktion entweder als Impulsausgang für Wirk- bzw. Blindenergie oder als Grenzwertmelder.

Die Ausgänge sind passiv und von allen anderen Kreisen durch Optokoppler galvanisch getrennt. Sie sind für die Ansteuerung von Tarifgeräten (S0-Norm DIN 43 864), oder von 24V-Relais geeignet.

 $\begin{array}{ll} \mbox{U}_{\mbox{\tiny ext}} & \mbox{\leq} \mbox{40 V DC} & \mbox{(OFF: Leckstrom} \mbox{\leq} \mbox{0.1 mA)} \\ \mbox{I}_{\mbox{L}} & \mbox{\leq} \mbox{150 mA} & \mbox{(ON: Klemmenspannung} \mbox{\leq} \mbox{1,2 V)} \end{array}$

Grenzwertausgänge:

Jede Messgrösse kann den Grenzwerten zugeordnet werden. Dabei ist je nach Anschlussart für folgende Werte eine ODER- bzw. UND-Verknüpfung möglich.

 $\begin{array}{llll} \text{3 Leiter ungleich belastet: } & U_{12}/U_{23}/U_{31}, & I_{1}/I_{2}/I_{3}, & I_{\text{avg1}}/I_{\text{avg2}}/I_{\text{avg3}} \\ \text{4 Leiter ungleich belastet: } & U_{1}/U_{2}/U_{3}, & U_{12}/U_{23}/U_{31}, & I_{1}/I_{2}/I_{3}, \\ & I_{\text{avg1}}/I_{\text{avg2}}/I_{\text{avg3}}, & P_{1}/P_{2}/P_{3}, & Q_{1}/Q_{2}/Q_{3}, & S_{1}/S_{2}/S_{3}, & PF_{1}/PF_{2}/PF_{3} \\ \end{array}$

Alarm ON: OR-Verknüpfung der Phasengrössen
Alarm OFF: AND-Verknüpfung der Phasengrössen

Verzögerungszeit: Fix 1 s (nicht veränderbar)

Impulsausgänge:

Die Impulsausgänge können Blind- und Wirkenergie in Form von S0-Normpulsen zur Ansteuerung von elektronischen und elektromechanischen Zählwerken ausgeben.

Die Pulsrate ist programmierbar:

1 ... 5000 lmp./Wh ... GWh bzw. 1 ... 5000 lmp/varh ... Gvarh Die lmpulsdauer ist nicht programmierbar und lässt sich auch hardwaremässig nicht verändern.

Impulsdauer: > 100 ms

Bei vorgeschalteten Messwandlern beziehen sich die Impulse auf die Primärenergiedaten.

Hilfsenergie →○

DC-, AC-Netzteil 50 bis 400 Hz 100 bis 230 V AC/DC ±15% oder 24 bis 60 V AC/DC ±15% (UL) 85 bis 125 V DC Leistungsaufnahme: < 3 VA (ohne Erweiterungsmodul)

Anzeige

14 mm hohe 7-Segmentanzeige; Helligkeit einstellbar 3-stellig mit Vorzeichen, Frequenz 4-stellig, Zähler 8-stellig Farbe: rot

Nullpunktunterdrückung

PF bzw. cosφ: Anzeige ---,

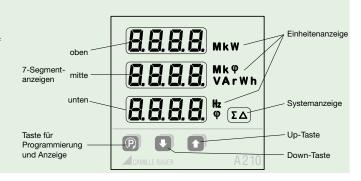
wenn Sx < 0,2% Snenn

Ströme: Anzeige 0, wenn lx < 0,1% Inenn

Beispiel der Anzeige der 4-Quadrantenmessung

System

Phase 1



Phase 2

Phase 3

ind induktiv incoming, Bezug

ERP kapazitiv outgoing, Abgabe

Multifunktionales Leistungsmessgerät

Anzeigeebenen: z.B. 4-Leiter ungleich belastet

				arigicion	5		
		a	b	С	d	е	f
	1	U1 U2 U3	U1 _{max.} U2 _{max} U3 _{max}	U1 _{min.} U2 _{min.} U3 _{min.}	U12 U23 U31	U12 _{max.} U23 _{max.} U31 _{max.}	U12 _{min.} U23 _{min.} U31 _{min.}
	2	1 2 3	11 _{max.} 12 _{max} 13 _{max}	11 _{avg} 12 _{avg} 13 _{avg}	I1 avgmax. I2 avgmax. I3 avgmax.	IN	IN _{max.}
	3	P1 P2 P3	P1 _{max} P2 _{max} . P3 _{max}	Р	P _{max} .		
	4	Q1 Q2 Q3	Q1 _{max.} Q2 _{max.} Q3 _{max}	Q	Q _{max.}		
	5	S1 S2 S3	S1 _{max} . S2 _{max} S3 _{max} .	s	S _{max.}		
	6	PF1	PF2	PF3	PF	PF _{minind}	PF _{mincap}
	7	F					
	8	EPinc HT ¹	EP inc LT ²	EP out HT ¹	EP out LT ²		
	9	EQ ind HT ¹	EQ ind LT ²	EQ cap HT1	EQ cap LT ²		
	10	P Q PF	P S F				
	11	Pint0	Pint1	Pint2	Pint3	Pint4	
	12	Qint0	Qint1	Qint2	Qint3	Qint4	
	13	Sint0	Sint1	Sint2	Sint3	Sint4	

¹ HT = Hochtarif

² LT = Niedertarif

Sicherheit

Schutzklasse: II (Spannungseingänge mit Schutz-

impedanz)

Ш Messkategorie: 2 Verschmutzungsgrad: Bemessungsspannung: 300 V

Zwischen Stromeingängen, Prüfspannungen:

Hilfsenergie, Digitalausgängen, Klemmen des aufgesetzten Steckmoduls: 3700 V / 50 Hz / 1 Min.

An Spannungseingängen: 4,25 kV 1,2/50 µs

Modulanschluss: Die rückseitige Stiftleiste ist via

> Schutzimpedanz mit den Spannungseingängen verbunden. Es dürfen nur die zulässigen Module

aufgesteckt werden!

Berührungsschutz: Front IP 66, Klemmen IP 20

Eingänge, Ausgänge und Hilfsenergie sind galvanisch getrennt. Die

Stromeingänge sind untereinander galvanisch getrennt.

Genauigkeitsangaben

Referenzbedingungen nach IEC 688 bzw. EN 60 688

Sinus 50 - 60 Hz, 15 - 30°C, Anwendungsgruppe II

Messgenauigkeit (bezogen auf Nennwert)

Strom, Spannung $\pm 0,5\%$ Leistung ± 1,0% ± 1.0% Powerfaktor Energie $\pm 1,0\%$

Frequenz ± 0,02 Hz (absolut)

Mechanik

Abmessungen A 210: 96 x 96 x 46 mm:

> Schalttafelausschnitt 92^{+0,8} x 92^{+0,8} mm

A 220: 144 x 144 x 46 mm:

> Schalttafelausschnitt 138+1 x 138+1 mm

Anschlüsse:

Eingänge Schraubklemmen

Querschnitt eindrähtig:

0,5 - 2,5 mm² Querschnitt feindrähtig:

0,5 - 1,5 mm²

Käfigzugfederklemmen Hilfsenergie, Ausgänge

Querschnitt ein- und feindrähtig:

0,5 - 1,5 mm²

Gehäusematerial: **ABS**

Brennbarkeitsklasse V-0 nach UL 94,

selbstverlöschend, nicht tropfend,

halogenfrei

Gewicht: 250 g beim A 210 bzw.

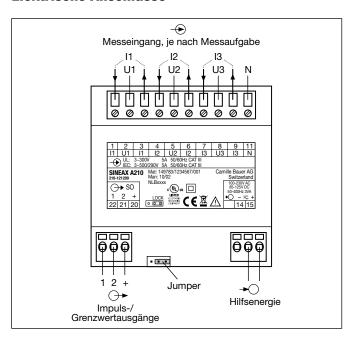
300 g beim A 220

Für Schalttafeleinbau Montage:

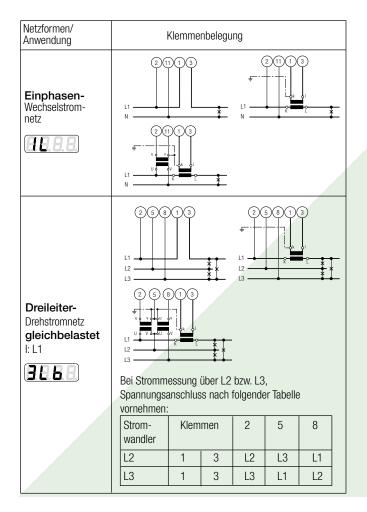
Umgebungsbedingungen

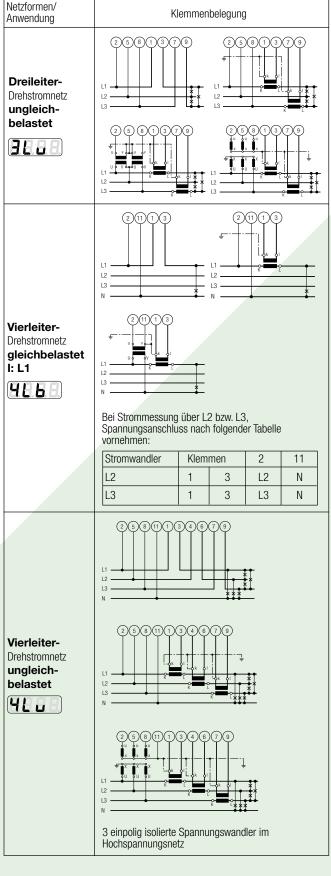
Betriebstemperatur: - 10 bis + 55 °C

- 25 bis + 70 °C Lagertemperatur:


Relative Feuchtigkeit: ≤ 75%

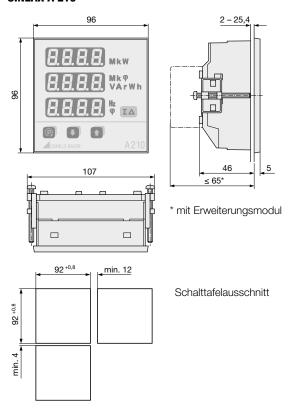
Betriebshöhe: 2000 m max.


Nur in Innenräumen zu verwenden


Multifunktionales Leistungsmessgerät

Elektrische Anschlüsse

Anschlussarten



Multifunktionales Leistungsmessgerät

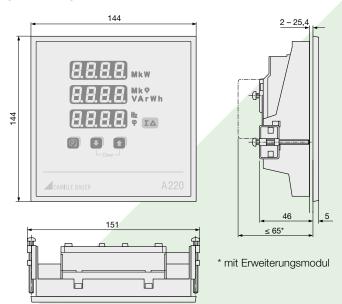
Wartungshinweis

Das Gerät ist wartungsfrei.

Mass-Skizzen (Massangaben in mm) SINEAX A 210

LieferumfangGrundgerät mit/ol

Grundgerät mit/ohne Erweiterungsmodul Betriebsanleitung in deutsch, französisch und englisch Befestigungsbügel


Messprotokoll bei den Bestellnummern

A 210: 150 318, 150 326, 152 710 und 152 728 A 220: 152 562, 152 570, 152 752 und 152 744

Zubehör SINEAX A 210/A 220

Beschreibung	ArtNr.
Betriebsanleitung in Deutsch, Französisch und Englisch	151 118
Hutschienenadapter (nur A 210)	154 055
Erweiterungsmodul EMMOD 201 Schnittstelle/MODBUS RTU/Datenlogger	150 285
Erweiterungsmodul EMMOD 202 2 Analogausgänge	155 574
Erweiterungsmodul EMMOD 203 Ethernet, 2 MB Datenspeicher, Echtzeituhr	155 582
Erweiterungsmodul EMMOD 204 Profibus DP	158 510
Erweiterungsmodul EMMOD 205 LON, Digitalausgang 125 V, direkte Anbindung an Summenstation U160x von Gossen-Metrawatt möglich	156 647
Erweiterungsmodul EMMOD 205 LON, Synchroneingang	156 639
Erweiterungsmodul EMMOD 206 Schnittstelle M-Bus, Digitaleingang <230 V AC/DC	168 965
Set Spreiznietstifte (4 Stück) für Hutschienen- adapter mit Erweiterungsmodul (nur A210)	154 394

SINEAX A 220

Erweiterungsmodul EMMOD 201

Kommunikation

Schnittstelle: RS232/RS485 umschaltbar Protokoll: MODBUS RTU für SCADA

Digitaleingang: Synchroneingang für Leistungsmittel-

werte oder Hoch/Niedertarifumschal-

tung für Energiezähler

Adresse der

Bus-Schnittstelle: 1 bis 247

Baud-Rate: 1200, 2400, 4800, 9600, 19,2 k

Parity-Check: no, even, odd, space

Datenspeicher für Mittelwerte

Speicherbare Werte: Pint: Wirkleistungs-Intervall mit Vorzei-

chen (Bezug + / Abgabe -)

Qint: Blindleistungs-Intervall Betrag

(induktiv + / kapazitiv +)

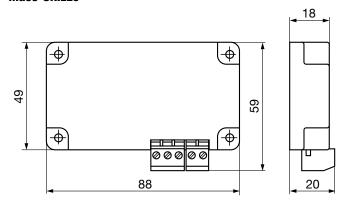
Speichertiefe

15 min-Intervall: 1 Grösse (Pint oder Qint) = 166 Tage

2 Grössen (Pint und Qint) = 83 Tage

Schalttafelausschnitt 138+1 x 138+1 mm

Dicht an dicht-Montage möglich


Multifunktionales Leistungsmessgerät

Zubehör EMMOD 201 (nicht im Lieferumfang)

Beschreibung	Artikel-Nr.
Software A200plus *)	146 557
Schnittstellenadapterkabel	152 603
Verlängerungskabel sub-D 9pol. 2 m	980 179

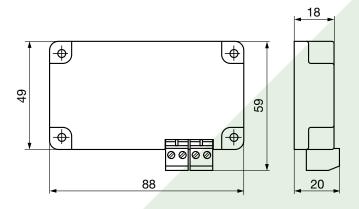
^{*)} Download kostenlos unter http://www.camillebauer.com

Mass-Skizze

Erweiterungsmodul EMMOD 202

Eingang: U, I, lavg, In, P, Q, S, F, $\cos \varphi$

Ausgang: 0 - 20 mA, 4 - 20 mA, invertierend


Begrenzung: 0/3,7 mA bzw. 21 mA

Bürdenspannung: 8 V

Genauigkeit: 0,1% (ohne A2..)

Anzahl Kanäle: 2 (galvanisch getrennt)

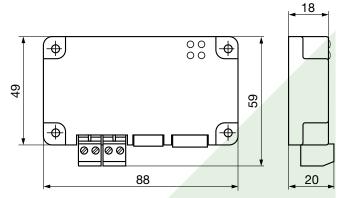
Mass-Skizze

Erweiterungsmodul EMMOD 203

Protokoll: MODBUS over TCP/IP, HTTP

Echtzeituhr: Batteriegepuffert

Via LAN oder extern synchronisiert (z.B. 230 V/50 Hz) Datenspeicher: bis zu 1 Jahr mit Zeitstempel


Anschlüsse

Ethernet RJ45-port: 10/100 Base Tx

Tarifumschaltung: steckbare Schraubklemmen Synchroneingang: steckbare Schraubklemmen Synchroneingang: 5 V – 300 V AC, 1 – 500 Hz

Tarifumschaltung: 5 V – 300 V AC/DC

Mass-Skizze

Zubehör EMMOD 203 (nicht im Lieferumfang)

Beschreibung	Artikel-Nr.
Software A200 <i>plus</i> *)	146 557

^{*)} Download kostenlos unter http://www.camillebauer.com

Erweiterungsmodul EMMOD 204

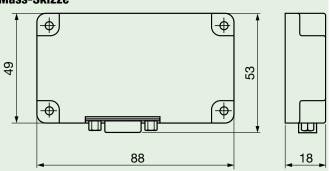
Schnittstelle: Profibus-DP

9-polige D-Sub Buchse EIA RS485-Norm

15 kV ESD Schutz

Baudrate: auto. Erkennung,

9600 bit/s ... 12 Mbit/s


Typ: DPV0, SPC4-2

Repeater_Ctrl_Sig (TTL)

Adresse: 126 (0 - 125)

Set_Slave_Add_Supp

Mass-Skizze

Multifunktionales Leistungsmessgerät

Zubehör EMMOD 204 (nicht im Lieferumfang)

Beschreibung	Artikel- Nr.
Profibus CD (GSD und Dokumentation) *)	156 027

*) Download kostenlos unter www.camillebauer.com

Erweiterungsmodul EMMOD 205

Kommunikation

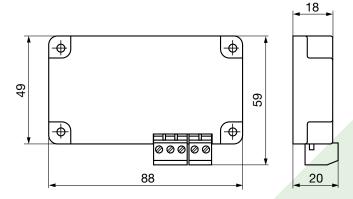
Schnittstelle: LON

Protokoll: LONTALK®

Medium: Echelon FTT-10A Transceiver,

übertragergekoppelt, verpolungssicher, verdrillte Zweidrahtleitung

Übertragung: 78 kBit/s


Anschlüsse

Bus: Steckbare Schraubklemmen

Hilfsanschluss: Digitaleingang Synchronisation oder

Digitalausgang 125 V DC

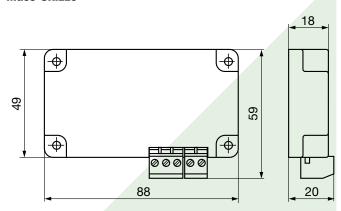
Mass-Skizze

Erweiterungsmodul EMMOD 206

Kommunikation

Schnittstelle: M-Bus Protokoll: M-Bus

Baudrate: 300...38'400 Baud


Anschlüsse

Bus: Steckbare Schraubklemmen

Digitaleingang: Steckbare Schraubklemmen für Mittelwert-Synchronisation

oder Tarifumschaltung

Mass-Skizze

Auf uns ist Verlass.

Camille Bauer AG Aargauerstrasse 7 CH-5610 Wohlen / Schweiz

Telefon: +41 56 618 21 11
Telefax: +41 56 618 21 21
info@camillebauer.com
www.camillebauer.com